Abstract
The aim of this study is to identify a drone swarm’s capabilities and the key factors influencing its employment in military operations. The research takes the quantitative analysis of scientific literature related to the technical and operational utilization of drones. The use of drones for military purposes in contemporary world is widespread. They conduct dull, dirty, dangerous and deep military operations replacing manned aviation in many areas. Progressive technological development including artificial intelligence and machine learning allows for the use of military drones in the form of a swarm. It is a quite new technology at the beginning of development. The study indicates that the capabilities of a drone swarm based on communication within the group and autonomy differentiate it from the typical use of unmanned aircraft. Size, diversity, self-configurability and self-perfection amongst the others indicated in literature are attributes of a drone swarm which may give advantage in military operation comparing to the classic use of unmanned aircraft. Emergent coordination as a command and control model of a drone swarm is a future way of utilizing that technology in military operations. In the future, a drone swarm will be a cheaper equivalent of advanced and much more expensive weapon systems conducting combat operations.
References
Arkin, R. (2009). Governing Lethal Behavior in Autonomous Robots. Taylor and Francis Group Publishing.
Arquilla, J., & Ronfeldt, D. (2000). Swarming and the Future of Conflict. RAND Corporation. https://www.rand.org/content/dam/rand/pubs/documented_briefings/2005/RAND_DB311.pdf
Burdick, J.E. (2015). Instantly Basing Locust Swarms. New Options for Future Air Operations (Drew Paper No. 20). AU Press. https://media.defense.gov/2017/Nov/21/2001847261/-1/-1/0/DP_0020_BURDICK_INSTANT_BASING_LOCUST_SWARMS.PDF
Chen, X., Tang, J., & Lao, S. (2020). Review of Unmanned Aerial Vehicle Swarm Communication Architectures and Routing Protocols. Applied Sciences, 10(10:3661). https://doi.org/10.3390/app10103661
Defense Science Board (2016). Report of the Defense Science Board Summer Study on Autonomy. Department of Defense, Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. https://www.hsdl.org/?view&did=794641
Ekelhof, M., & Paoli, G.P. (2020). Swarm Robotics. Technical and Operational Overview of The Next Generation of Autonomous Systems. United Nations Institute for Disarmament Research. https://unidir.org/sites/default/files/2020-04/UNIDIR%20Swarm%20Robotics%20-%202020.pdf
Grimal, F., & Sundaram, J. (2018). Combat Drones: Hives, Swarms, and Autonomous Action? Journal of Conflict & Security Law, 23(1), 105–135. https://doi.org/10.1093/jcsl/kry008
Ilachinski, A. (2017). AI, Robots, and Swarms. Issues, Questions, and Recommended Studies. CAN Corporation. https://www.cna.org/cna_files/pdf/DRM-2017-U-014796-Final.pdf
Johnson, J. (2020). Artificial Intelligence, Drone Swarming and Escalation Risks in Future Warfare. The RUSI Journal, 165(2), 1–11. https://doi.org/10.1080/03071847.2020.1752026
Kallenborn, Z. (2020). Are Drone Swarms Weapons of Mass Destruction? (Future Warfare Series No. 60). AU Press. https://media.defense.gov/2020/Jun/29/2002331131/-1/-1/0/60DRONESWARMS-MONOGRAPH.PDF
Martinic, G. (2020). Swarming, Expendable, Unmanned Aerial Vehicles as a Warfighting Capability. Canadian Military Journal, 20(4), 43–49. http://www.journal.forces.gc.ca/vol20/no4/PDF/CMJ204Ep43.pdf
McLaughlan, B. & Hexmoor, H. (2011). Emergent command and control architecture for dynamic agent communities. Journal of Experimental & Theoretical Artificial Intelligence, 23(4), 363–387. https://doi.org/10.1080/09528130701664608
NATO Standardization Office (2020). ATP-3.3.8.2 Unmanned Aircraft System Tactics, Techniques And Procedures. NATO Standardization Office. https://nso.nato.int/nso/
OUSD(A&S) (2018). Unmanned Systems Integrated Roadmap 2017–2042. United States. Office of the Under Secretary of Defense for Acquisition and Sustainment. https://www.defensedaily.com/wp-content/uploads/post_attachment/206477.pdf
Rossiter, R. (2018). Drone usage by militant groups: exploring variation in adoption. Defense & Security Analysis, 34(2), 113–126. https://doi.org/10.1080/14751798.2018.1478183
Scharre, P. (2014). Robotics on the Battlefield, Part II: The Coming Swarm. Center for a New American Security. https://www.files.ethz.ch/isn/184587/CNAS_TheComingSwarm_Scharre.pdf
Scharre, P. (2016). Autonomous Weapon and Operational Risk. Center for a New American Security. https://s3.amazonaws.com/files.cnas.org/documents/CNAS_Autonomous-weapons-operational-risk.pdf
Sterritt R., & Hinchey, M. G.(2005). Apoptosis and self-destruct: A contribution to autonomic agents? In Hinchey, M.G., Rash, J.L., Truszkowski, W.F. & Rouff, C.A. (Eds.), Formal Approaches to Agent-Based Systems (pp. 269–278). Springer. https://www.springer.com/gp/book/9783540244226
Suzuki, S. (2018). Recent researches on innovative drone technologies in robotics field. Advanced Robotics, 32(19), 1008–1022. https://doi.org/10.1080/01691864.2018.1515660
Tan Y., & Zheng, Z. (2013). Research Advance in Swarm Robotics. Defence Technology, 9(1), 18–39. https://doi.org/10.1016/j.dt.2013.03.001
Truszkowski, W. F., Hinchey, M. G., Rash, J.L. & Rouff, C. A. (2006). Autonomous and autonomic systems: a paradigm for future space exploration missions. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 36(3),279–291.https://doi.org/10.1109/TSMCC.2006.871600
U.S. Department of Defense (2017). Directive 3000.09: Autonomy in Weapon Systems. U.S. Department of Defense. https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodd/300009p.pdf.
Wallach, W. (2017). Toward a Ban on Lethal Autonomous Weapons: Surmounting the Obstacles. Communications of the ACM, 60(5), 28–34. https://doi.org/10.1145/2998579
Willis, M., Haider, A., Teletin, D.C., Wagner, D. (2021). A Comprehensive Approach to Countering Unmanned Aircraft Systems. Joint Air Power Competence Centre. https://www.japcc.org/wp-content/uploads/A-Comprehensive-Approach-to-Countering-Unmanned-Aircraft-Systems.pdf

This work is licensed under a Creative Commons Attribution 4.0 International License.