Challenges for Employing Drones in the Urban Transport Systems


cargo movement
passenger movement
urban air mobility
urban transport systems

How to Cite

Zieliński, T. (2022). Challenges for Employing Drones in the Urban Transport Systems. Safety & Defense, 8(2), 1-8.


Unmanned aerial vehicles, often referred to as drones, are increasingly used as an element of the transport system, including in urban areas. Despite the limitations, mainly related to the range and load capacity, it should be expected that in the near future, they will transport cargo and passengers as one of the elements of the urban transport system. The concept of Urban Air Mobility (UAM), which envisages the use of drones and other aircraft in urban airspace, meets this goal.

Literature analysis was used to identify and describe applications of drones in the urban transport systems and to articulate key challenges related to this issue as well.

The article presents generalizations regarding the use of drones in the urban transport system, including urban air mobility. It identifies the key challenges related to their implementation in urban areas. Typical applications of drones in urban airspace include passenger and cargo transportation and support for services and Intelligent Transportation System components. The main challenges relate to legal regulations, safety and security, air traffic management, environmental impact, infrastructure and social acceptance for implementing drones in the city’s transport system.


Air Cargo News. (2020, January, 28). Wide-body drone set to take-off at Farnbor-ough.

Baur, S., & Hader, M. (2020, February, 19). Cargo Drones: The Future Of Parcel De-livery. Roland Berger GMBH.

Baur, S., & Hader, M. (2020, November, 10). The high-flying industry: Urban Air Mobility takes off. Roland Berger GMBH.

Bauranov, A., & Rakas, J. (2021). Designing airspace for urban air mobility: A re-view of concepts and approaches. Progress in Aerospace Sciences, 125(100726), 1-27.

Cohen, A.P., Shaheen, S.A., & Farrar, E.M. (2021). Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges. IEEE Transactions on Intelligent Transportation Systems, 22(9), 6074-6087.

EASA. (2021). Study on the societal acceptance of Urban Air Mobility in Europe. European Union Aviation Safety Agency.

Elroy Air. (2021). About the Chaparral.

Fu, M., Rothfeld, R., & Antoniou, C. (2019). Exploring Preferences for Trans-portation Modes in an Urban Air Mobility Environment: a Munich Case Study. Transportation Research Record: Journal of the Transportation Research Board, 2673(10), 427-442.

Gupta, A., Afrin, T., Scully, E., & Yodo, N. (2021). Advances of UAVs toward Future Transportation: The State-of-the-Art, Challenges, and Opportunities. Future Trans-portation, 1(2), 326-350.

Harry, R. (2020, April, 24). Sabrewing set for launch of heavy-lift drone aircraft. Air Cargo News.

Hsu, J. (2020, May, 01). Sabrewing Cargo Drone Rises to Air Force Challenge. IEEE Spectrum.

Jordan, J., & Collins, M.P. (2019, December, 31). Large unmanned cargo aircraft set to take off, despite regulatory challenges. Air Cargo News.

Kellermann, R., Biehle, T., & Fischer, L. (2020). Drones for parcel and passenger transportation: A literature review. Transportation Research Interdisciplinary Per-spectives, 4(100088), 1-13.

Menouar, H., Güvenc, H.I., Akkaya, K., Uluagac, A.S., Kadri, A., & Tuncer, A. (2017). UAV-Enabled Intelligent Transportation Systems for the Smart City: Appli-cations and Challenges. IEEE Communications Magazine, 55(3), 22-28.

Müller, S., Rudolph, Ch., & Janke, Ch. (2019). Drones for last mile logistics: Balo-ney or part of the solution? Transportation Research Procedia, 41, 73-87.

Outay, F., Mengash, H.A., & Adnan, M. (2020). Applications of unmanned aerial ve-hicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges. Transportation Research Part A, 141, 116-129.

PwC. (2018). Skies without limits: Drones – taking the UK’s economy to new heights. PricewaterhouseCoopers.

Reiche, C., Cohen, A.P., & Fernand, Ch. (2021). An initial assessment of the poten-tial weather barriers of urban air mobility. IEEE Transactions on Intelligent Trans-portation Systems, 22(9), 6018-6027.

Saboor, A., Coene, S., Vinogradov, E., Tanghe, E., Joseph, W., & Pollin, S. (2021). Elevating the future of mobility: UAV-enabled Intelligent Transportation Systems. Networking and Internet Architecture.

SSRN. (2021). Ready for Take-Off? Integrating Drones into the Transport System (Research Report). International Transport Forum.

Straubinger, A., Michelmann, J., & Biehle, T. (2021). Business model options for passenger urban air mobility. CEAS Aeronautical Journal, 12, 361-380.

Wakefield, J. (2020, January, 02). The airborne commute - a flight of fancy? BBC.

Zieliński, T., & Marud, W. (2019). Challenges for integration of remotely piloted aircraft systems into the European sky. Scientific Journal of Silesian University of Technology. Series Transport, 102, 217-229.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.