The Possible Impact of Quantum Annealing on Cybersecurity
PDF

Keywords

Cryptanalysis
Cybersecurity
Quantum annealing
Safety
Stream ciphers

How to Cite

Leśniak, M., Wroński, M., & Burek, E. (2024). The Possible Impact of Quantum Annealing on Cybersecurity. Safety & Defense, 10(1), 42-56. https://doi.org/10.37105/sd.216

Abstract

Quantum annealing is an approach to quantum computing that serves as an alternative to general-purpose quantum computing. However, the cryptographic community does not currently view quantum annealing as a significant threat to cryptographic algorithms. Recent findings indicate that quantum annealing could be used for the efficient cryptanalysis of stream ciphers. Furthermore, although additional analysis is necessary, cryptanalysis with quantum annealing appears to require a relatively small amount of resources, suggesting its practical applicability. This contrasts with Grover's algorithm, which necessitates quantum circuits of substantial depth and billions of quantum gates. This paper will explore the potential cybersecurity risks if the implications of quantum annealing are not taken seriously.

https://doi.org/10.37105/sd.216
PDF

References

Boothby, T., King, A. D., & Roy, A. (2016). Fast clique minor generation in Chimera qubit connectivity graphs. Quantum Information Processing, 15, 495–508.

Burek, E., Wroński, M., Mańk, K., & Misztal, M. (2022). Algebraic Attacks on Block Ciphers Using Quantum Annealing. IEEE Transactions on Emerging Topics in Computing, 10(2), 678–89.

Cai, J., Macready, W. G., & Roy, A. (2014). A practical heuristic for finding graph minors. arXiv preprint arXiv:1406.2741.

Chen, L. et al. (2016). Report on Post-Quantum Cryptography (NIST IR 8105). https://csrc.nist.gov/pubs/ir/8105/final

Date, P., Patton, R., Schuman, C., & Potok, T. (2019). Efficiently embedding QUBO problems on adiabatic quantum computers. Quantum Information Processing, 18, 1-31.

D-Wave System Documentation. D-Wave QPU Architecture: Topologies. https://docs.dwavesys.com/docs/latest/c_gs_4.html. Available: 2023.11.30

Jiang, S., Britt, K. A., McCaskey, A. J., Humble, T. S., & Kais, S. (2018). Quantum annealing for prime factorization. (Scientific reports, 8(1)). https://www.nature.com/articles/s41598-018-36058-z.pdf

Kelly, B., King, A.D., & Raymond., J. (2021) Zephyr topology of D-Wave quantum processors. (14-1056A-A). https://www.dwavesys.com/media/2uznec4s/14-1056a-a_ zephyr_topology_of_d-wave_quantum_processors.pdf

McGeoch, C., & Farré, P. (2022) Advantage Processor Overview (14-1058A-A). https://www.dwavesys.com/media/3xvdipcn/14-1058a-a_advantage_processor_overview.pdf

Morita, S., & Nishimori, H. (2008). Mathematical foundation of quantum annealing. Journal of Mathematical Physics, 49(12), 125–210.

Mukherjee, S., & Chakrabarti, B. (2015). Multivariable optimization: Quantum annealing and computation. The European Physical Journal Special Topics, 224(1), 17–24.

Rosenberg, I.G. (1975). Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d’Etudes de Recherche Op´erationnelle, 17(1), 71–4.

Wang, B., Hu, F., Yao, H., & Wang, C. (2020). Prime factorization algorithm based on parameter optimization of Ising model. (Scientific reports, 10(1)). https://www.nature.com/articles/s41598-020-62802-5.pdf

Wroński, M., Burek, E., & Leśniak, M. (2023). (In)security of stream ciphers against quantum annealing attacks on the example of the Grain 128 and Grain 128a ciphers. Cryptology ePrint Archive. https://eprint.iacr.org/2023/1502

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.