An Analysis of the Possibility of Using Foamed Polypropylene for the Construction of Aircraft Structural Elements
PDF

Keywords

aircraft
construction
foamed polypropylene (PPE)
safety

How to Cite

Miros, M., & Miros, A. (2025). An Analysis of the Possibility of Using Foamed Polypropylene for the Construction of Aircraft Structural Elements. Safety & Defense, 10(2), 71-77. https://doi.org/10.37105/sd.241

Abstract

This article contains two selected properties of foamed polypropylene. Durability and water absorption were tested. The tested possibilities are available in terms of the use of the tested material in air structures. Resistance to them is possible due to the fact that they are structural elements of air elements, while the lowest water absorption is required due to the requirements that can be operated by airborne vehicles. The property consisting in the ability to absorb water by the tested material excludes it from the test results and its use in the formation of air substances. The test results do not provide grounds to reject the tested material as a potential use of a structural material in air structures.

https://doi.org/10.37105/sd.241
PDF

References

Ashby, M., Shercliff, H., & Cebon, D. (2000). Materials: Engineering, Science, Processing and Desing. Elsevier.

Baker, A., & Murray, L. (2016). Composite Materials for Aircraft Structures. American Institute of Aeronautics & Astronautics.

Baraniecki, R., Kurdelski, M., & Leski, A. (2008). Analiza Numeryczna Stanu Naprężenia w Klapie Samolotu Odrzutowego. Acta Mechanica et Automatica, 2(1), 5–8.

Bruce, K. (2013). Analysis of Aircraft Structure. Cambridge University Press.

Dingle, L., & Tolley, M. (2013). Aircraft Engineering Principles. Routledge.

EN 1607. (2013). Thermal insulating products for building applications. Determination of tensile strength perpendicular to faces. https://standards.iteh.ai/catalog/standards/cen/6bc3a815-c07a-4a20-b1c1-85885fcee1ce/en-12087-2013?srsltid=AfmBOorj2b5w7eHken2vgy8PlultOmdW4fBCqaM1hlo_2nVaeZb9F9Zq

EN 12087. (2013). Thermal insulating products for building applications - Determination of long term water absorption by immersion. https://standards.iteh.ai/catalog/standards/cen/6bc3a815-c07a-4a20-b1c1-85885fcee1ce/en120872013?srsltid=AfmBOorj2b5w7eHken2vgy8PlultOmdW4fBCqaM1hlo_2nVaeZb9F9Zq

Fielding, J. (2017). Introduction to Aircraft Design. Cambridge University Press.

Galiński, C. (2016). Wybrane zagadnienia projektowania samolotów. Instytut Lotnictwa.

Gokhale, A., Eswara, N., & Basu, B. (2019). Light Weight for Defense Aerospace and Transportation. Springer.

Gurgen, S., & Katalin, I.. (2023). Modern manufacturing Processes for Aircraft Materials. Elsevier.

Katunin, A. (2019). Aircraft structures: Mechanics, Design and Maintenance. Politechnika Śląska.

Kharchenko, V., Bugayko, D., & Ostroumov, I. (2020). Budowa Statków Powietrznych I System Żeglugi Powietrznej. Biblioteka Międzynarodowej Wyższej Szkoły Logistyki i Transportu.

Kumar, D., Raj, G., Shivaani, G., & Sreehari, V. (2018). Structural Analysis of Aircraft Wings Made of Natural Fiber Reinforced Composites. International Journal of Mechanical Engineering and Technology, 9(11), 1262–1268.

https://iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_9_ISSUE_11/IJMET_09_11_130.pdf

Kuşhan, M., Gürgen, S., & Sofuoğlu, M. (2013). Materials, Structure and Manufacturing for Aircrafts. Springer Link.

Megson, T. (2016). Aircraft Structures for Engineering Students. Elsevier.

Pantelakis, P., & Tserpes, K. (2020). Revolutionizing Aircraft Materials and Processes. Springer.

PRO EPP. (2021). Czym jest Poliprylen spieniony? (EPP). http://eppgroup.pl/o-epp/

Siddiqui, T. (2015). Aircraft Materials and Analysis. McGraw-Hill.

Sohel, R. (2016). Advanced Composite Materials for Aerospace Engineering. Elsevier.

Titterton, F. (2015). Aircraft Materials and Processes. Himalayan Book.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.