Alternative Security of the Combat Readiness Recovery Using 3D Printing and Reverse Engineering
PDF

Keywords

3D and 4D printing
defense system
production subunits
reverse engineering
supply chains

How to Cite

Kowalski, R., & Augustyn, S. (2023). Alternative Security of the Combat Readiness Recovery Using 3D Printing and Reverse Engineering. Safety & Defense, 9(2), 40-51. https://doi.org/10.37105/sd.209

Abstract

Disrupting spare parts supply chains can harm the smooth running of an organization. In the case of military vehicles, weapons or other types of equipment used on the battlefield, this is a serious threat that may result in the inability to continue some tactical operations. An ad hoc way to maintain the ability to take action while the appropriate spare parts are delivered and to improve damaged devices may be to produce the damaged components locally. Such a temporary solution is possible for relatively simple elements whose structure, mechanical properties and principle of operation can be determined on a reverse engineering basis. This article describes the concept of alternative solutions for temporarily repairing damaged devices by producing spare parts in mobile specialized production subunits. This paper characterizes the types of 3D printing, contemporary examples of use in foreign armies, priorities of international alliances related to 3D printing, and a case study of repairing an unmanned aircraft by means of 3D printing. Using the experience and knowledge of foreign armies, adapting the possibilities of 3D printing applications to one's own needs, defining legal regulations and creating properly equipped subunits makes it possible to implement the presented concept. Creating conditions for implementing the described concept facilitates the production of a suitable product range in peace, crisis or conflict situations, which may significantly contribute to increasing the level of readiness of the national defense systems.

https://doi.org/10.37105/sd.209
PDF

References

Aimar, A., Palermo A., & Innocenti, B. (2019). The Role of 3D Printing in Medical Applications: A State of the Art. Journal of Healthcare Engineering, 2019. https://downloads.hindawi.com/journals/jhe/2019/5340616.pdf

Ali, M.H., Issayev, G., Shehab, E., & Sarfraz, S. (2022). A critical review of 3D printing and digital manufacturing in construction engineering. Rapid Prototyping Journal, 28(1/4), 1312-1324. https://doi.org/10.1108/RPJ-07-2021-0160.

Boissonneault, T. (2019.12.20). US military looks to boost use of additive manufacturing. VoxelMatters. https://www.voxelmatters.com/u-s-military-boost-adoption-additive-manufacturing/

Clemens, M. (2022.06.30). The Use of Additive Manufacturing in The Defense Sector. 3Dnatives. https://www.3dnatives.com/en/the-use-additive-manufacturing-defense-sector300620224/

Fiał, C., & Pieknik M. (2020). 3D printing as a technology of the future – part 1. Technologia i Jakość Wyrobów, 55, 92-105. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-e1471016-bbaa-4676-ae20-8131275d486d

Fridbertsson, N., T. (2022). Technological Innovation for Future Warfare (Report No. 025 STCTTS 22 E rev.1). Sub-Committee on Technology Trends and Security. https://www.nato-pa.int/document/2022-future-warfare-report-fridbertsson-025-stctts

Kachel, S., Kozakiewicz A., Łącki T., & Olejnik, A. (2011). Zastosowanie inżynierii odwrotnej do procesu odtwarzania geometrii układu wlotowego silnika RD-33 w samolocie MIG-29. Prace Instytutu Lotnictwa, 4(213)¬, 66-84. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BSW4-0110-0008/c/Kachel_zastosowanie_PIL_213_2011.pdf

Kordowska, M., Chromańska, M., Musia,ł W., & Plichta, J. (2015). Druk 3D w przemyśle samochodowym. Autobusy, 6, 123-128.

Leniowski, R., Nitek, S., Rzeszutek, M., Ryk, Ł., Tomecki, K., Wroński, M., & Kucharczyk M. (2016). Modelowanie endoprotez – drukarki 3D i 5D w zastosowaniach medycznych. Acta Bio-Optica et Informatica Medica. Inżynieria Biomedyczna, 22(4), 226-233. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-dc816b6a-b9ca-4774-86a7-246e55003496/c/v22_n4_a6_Leniowski1_226-233.pdf

Lulkiewicz, J., Chruściński M., Szkudelski S., & Ziółkiewicz S. (2017). Wykorzystanie inżynierii odwrotnej do kontroli zmian wymiarowych w cyklu eksploatacyjnym części maszyn. Obróbka Plastyczna Metali, 28(3), 213-222. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-df7d2caf-3daa-49bb-8aeb-01a67b1494f1/c/OPM-3-2017-6-Lulkiewicz.pdf

Maciążek, M. (2021.07.10). Wojskowe zastosowania druku 3D. 3D.EDU.PL. https://3d.edu.pl/wojskowe-zastosowania-druku-3d/

Młody, M., Ratajczyk-Mrozek, M., &Sajdak, M. (2023). Industry 4.0 technologies and managers’ decision-making across value chain. Evidence from the manufacturing industry. Engineering Management in Production and Services. 15(3), 69-83.

https://www.researchgate.net/publication/374163294_Industry_40_technologies_and_managers%27_decision-making_across_value_chain_Evidence_from_the_manufacturing_industry

Naniz, M., A., Askari, M., Zolfagharian, A., & Naniz, Bodaghi, M. (2022). 4D printing: a cutting-edge platform for biomedical applications. Biomedical Materials, 17(6), https://iopscience.iop.org/article/10.1088/1748-605X/ac8e42/pdf

Omega Team. (2020). 5D Printing. A new branch of Additive Manufacturing. Omega Consulting.,

PaP. (2016.07.07). Nadchodzi druk 5D. Geekweek. https://geekweek.interia.pl/technauka/news-nadchodzi-druk-5d,nId,2231515

Piłat, M., Sobaszek, Ł., & Wojciechowski Ł. (2016). Porównanie rezultatów tworzenia modeli cyfrowych za pomocą skanerów 3D. Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej, 10, 147-161.

Piszko, P. (2022.11.24). Selektywne spiekanie laserowe w szczegółach. Sinterit. https://sinterit.com/pl/blog/technologia-sls/selektywne-spiekanie-laserowe-w-szczegolach/

MON. (2019).Priorytetowe kierunki rozwoju badań w Resorcie Obrony Narodowej na lata 2016-2026. https://www.wojsko-polskie.pl/law/u/26/ba/26bae1a8-bf91-4b74-a8d4-18c050fcba7b/1-25_priorytetowe_kierunki_badan_w_mon_na_lata_2017-2026.pdf

OJEU. (2019). Commission Delegated Regulation (EU) 2019/945 of 12 March 2019 on unmanned aircraft systems and on third-country operators of unmanned aircraft systems

Reding, D., D., De Lucia, A., Blanco, Á., Regan L., A., & Bayliss, D. (2023). Science & Technology Trends 2023-2043. Across the Physical, Biological, and Information Domains Volume 1. NATO Science & Technology Organization. https://www.nato.int/nato_static_fl2014/assets/pdf/2023/3/pdf/stt23-vol1.pdf

SAE International (2010). Guidelines for Development of Civil Aircraft and Systems ARP4754A.

Skrzek, K. (2020.01.22). Druk 3D metodą SLA – wyższa jakość, ale drożej. Platforma Przemysłu Przyszłości. https://przemyslprzyszlosci.gov.pl/druk-3d-metoda-sla-wyzsza-jakosc-ale-drozej/

Stachaczyk, M. (2023). Analiza projektu staowiska do wytwarzania elementów statku powietrznego z wykorzystaniem technologii do szybkiego prototypowania [Unpublished doctoral dissertation]. Polish Air Force University.

Szczygieł, P. & Rajzer, I. (2020). Druk 4D czym różni się od druku 3D. In Rysiński, J. (Ed.), Projektowanie, badania i eksploatacja : monografia (pp. 343-352). Wydawnictwo Naukowe Akademii Techniczno-Humanistycznej w Bielsku-Białej. https://www.engineerxxi.ath.eu/produkt/projektowanie-badania-i-eksploatacja-2020/

Szelewski, M., & Wieczorowski M. (2015). Inżynieria odwrotna i metody dyskretyzacji obiektów fizycznych. Mechanik, 88(12), 183-188. https://www.mechanik.media.pl/pliki/do_pobrania/artykuly/22/40_183_188.pdf

Tribbts, S., McKnelly, C., Olguin, C., Dikovsky, D., & Hirsch, S. (2014). 4D printing and universal transformation, In Gerber D., Huang A, Sanchez J. (Eds.), ACADIA 2014 Design Agency: Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (pp. 539-548). ACADIA/ Riverside Architectural Press. https://papers.cumincad.org/data/works/att/acadia14_539.content.pdf

Zahorski, T. (2021). Analiza możliwości wykorzystania druku 3D w wytwarzaniu i naprawie sprzętu lotniczego [Unpublished doctoral dissertation]. Polish Air Force University.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.